- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Durantini_Luca, Hugo A (2)
-
Hyogo, Michiharu (2)
-
Acharya, Sovan (1)
-
Adams, Fred (1)
-
Adorno, Jose I (1)
-
Aganze, Christian (1)
-
Alexandrov, Svetoslav (1)
-
Allers, Katelyn N (1)
-
Antonini, Edoardo (1)
-
Apps, Kevin (1)
-
Balcioglu, Hasret (1)
-
Barclay, Thomas (1)
-
Bardalez_Gagliuffi, Daniella C (1)
-
Beaulieu, Paul (1)
-
Bickle, Thomas P (1)
-
Bilsing, Martin (1)
-
Brooks, Hunter (1)
-
Burgasser, Adam J (1)
-
Calamari, Emily (1)
-
Caselden, Dan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Transiting Exoplanet Survey Satellite (TESS) has surveyed nearly the entire sky in full-frame image mode with a time resolution of 200 s to 30 minutes and a temporal baseline of at least 27 days. In addition to the primary goal of discovering new exoplanets, TESS is exceptionally capable at detecting variable stars, and in particular short-period eclipsing binaries, which are relatively common, making up a few percent of all stars, and represent powerful astrophysical laboratories for deep investigations of stellar formation and evolution. We combed Sectors 1–82 of the TESS full-frame image data searching for eclipsing binary stars using a neural network that identified ∼1.2 million stars with eclipse-like features. Of these, we have performed an in-depth analysis on ∼60,000 targets using automated methods and manual inspection by citizen scientists. Here we present a catalog of 10,001 uniformly vetted and validated eclipsing binary stars that passed all our ephemeris and photocenter tests, as well as complementary visual inspection. Of these, 7936 are new eclipsing binaries while the remaining 2065 are known systems for which we update the published ephemerides. We outline the detection and analysis of the targets, discuss the properties of the sample, and highlight potentially interesting systems. Finally, we also provide a list of ∼900,000 unvetted and unvalidated targets for which the neural network found eclipse-like features with a score higher than 0.9, and for which there are no known eclipsing binaries within a sky-projected separation of a TESS pixel (≈21″).more » « lessFree, publicly-accessible full text available August 1, 2026
-
Kirkpatrick, J Davy; Marocco, Federico; Gelino, Christopher R; Raghu, Yadukrishna; Faherty, Jacqueline K; Bardalez_Gagliuffi, Daniella C; Schurr, Steven D; Apps, Kevin; Schneider, Adam C; Meisner, Aaron M; et al (, The Astrophysical Journal Supplement Series)Abstract A complete accounting of nearby objects—from the highest-mass white dwarf progenitors down to low-mass brown dwarfs—is now possible, thanks to an almost complete set of trigonometric parallax determinations from Gaia, ground-based surveys, and Spitzer follow-up. We create a census of objects within a Sun-centered sphere of 20 pc radius and check published literature to decompose each binary or higher-order system into its separate components. The result is a volume-limited census of ∼3600individualstar formation products useful in measuring the initial mass function across the stellar (<8M⊙) and substellar (≳5MJup) regimes. Comparing our resulting initial mass function to previous measurements shows good agreement above 0.8M⊙and a divergence at lower masses. Our 20 pc space densities are best fit with a quadripartite power law, , with long-established values ofα= 2.3 at high masses (0.55 <M< 8.00M⊙), andα= 1.3 at intermediate masses (0.22 <M< 0.55M⊙), but at lower masses, we findα= 0.25 for 0.05 <M< 0.22M⊙, andα= 0.6 for 0.01 <M< 0.05M⊙. This implies that the rate of production as a function of decreasing mass diminishes in the low-mass star/high-mass brown dwarf regime before increasing again in the low-mass brown dwarf regime. Correcting for completeness, we find a star to brown dwarf number ratio of, currently, 4:1, and an average mass per object of 0.41M⊙.more » « less
An official website of the United States government
